Adversarial Zoom Lens: A Novel Physical-World Attack to DNNs

06/23/2022
by   Chengyin Hu, et al.
0

Although deep neural networks (DNNs) are known to be fragile, no one has studied the effects of zooming-in and zooming-out of images in the physical world on DNNs performance. In this paper, we demonstrate a novel physical adversarial attack technique called Adversarial Zoom Lens (AdvZL), which uses a zoom lens to zoom in and out of pictures of the physical world, fooling DNNs without changing the characteristics of the target object. The proposed method is so far the only adversarial attack technique that does not add physical adversarial perturbation attack DNNs. In a digital environment, we construct a data set based on AdvZL to verify the antagonism of equal-scale enlarged images to DNNs. In the physical environment, we manipulate the zoom lens to zoom in and out of the target object, and generate adversarial samples. The experimental results demonstrate the effectiveness of AdvZL in both digital and physical environments. We further analyze the antagonism of the proposed data set to the improved DNNs. On the other hand, we provide a guideline for defense against AdvZL by means of adversarial training. Finally, we look into the threat possibilities of the proposed approach to future autonomous driving and variant attack ideas similar to the proposed attack.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset