Agreement Tracking for Multi-Issue Negotiation Dialogues

07/13/2023
by   Amogh Mannekote, et al.
0

Automated negotiation support systems aim to help human negotiators reach more favorable outcomes in multi-issue negotiations (e.g., an employer and a candidate negotiating over issues such as salary, hours, and promotions before a job offer). To be successful, these systems must accurately track agreements reached by participants in real-time. Existing approaches either focus on task-oriented dialogues or produce unstructured outputs, rendering them unsuitable for this objective. Our work introduces the novel task of agreement tracking for two-party multi-issue negotiations, which requires continuous monitoring of agreements within a structured state space. To address the scarcity of annotated corpora with realistic multi-issue negotiation dialogues, we use GPT-3 to build GPT-Negochat, a synthesized dataset that we make publicly available. We present a strong initial baseline for our task by transfer-learning a T5 model trained on the MultiWOZ 2.4 corpus. Pre-training T5-small and T5-base on MultiWOZ 2.4's DST task enhances results by 21 respectively over training solely on GPT-Negochat. We validate our method's sample-efficiency via smaller training subset experiments. By releasing GPT-Negochat and our baseline models, we aim to encourage further research in multi-issue negotiation dialogue agreement tracking.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro