Algebraizability of the Logic of Quasi-N4-Lattices

04/14/2022
by   Clodomir Silva Lima Neto, et al.
0

The class of quasi-N4-lattices (QN4-lattices) was introduced as a common generalization of quasi-Nelson algebras and N4-lattices, in such a way that N4-lattices are precisely the QN4-lattices satisfying the double negation law (  x = x) and quasi-Nelson algebras are the QN4-lattices satisfying the explosive law (x ^  x) -> y = ((x ^  x) -> y) -> ((x ^  x) -> y). In this paper we introduce, via a Hilbert-style presentation, a logic (L_QN4) whose algebraic semantics is a class of algebras that we show to be term-equivalent to QN4-lattices. The result is obtained by showing that the calculus introduced by us is algebraizable in the sense of Blok and Pigozzi, and its equivalent algebraic semantics is term-equivalent to the class of QN4-lattices. As a prospect for future investigation, we consider the question of how one could place L_QN4 within the family of relevance logics.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro