An adaptive RKHS regularization for Fredholm integral equations

03/24/2023
by   Fei Lu, et al.
0

Regularization is a long-standing challenge for ill-posed linear inverse problems, and a prototype is the Fredholm integral equation of the first kind. We introduce a practical RKHS regularization algorithm adaptive to the discrete noisy measurement data and the underlying linear operator. This RKHS arises naturally in a variational approach, and its closure is the function space in which we can identify the true solution. We prove that the RKHS-regularized estimator has a mean-square error converging linearly as the noise scale decreases, with a multiplicative factor smaller than the commonly-used L^2-regularized estimator. Furthermore, numerical results demonstrate that the RKHS-regularizer significantly outperforms L^2-regularizer when either the noise level decays or when the observation mesh refines.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro