An Analysis of the Convergence of Graph Laplacians

01/28/2011
by   Daniel Ting, et al.
0

Existing approaches to analyzing the asymptotics of graph Laplacians typically assume a well-behaved kernel function with smoothness assumptions. We remove the smoothness assumption and generalize the analysis of graph Laplacians to include previously unstudied graphs including kNN graphs. We also introduce a kernel-free framework to analyze graph constructions with shrinking neighborhoods in general and apply it to analyze locally linear embedding (LLE). We also describe how for a given limiting Laplacian operator desirable properties such as a convergent spectrum and sparseness can be achieved choosing the appropriate graph construction.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro