An Arbitrary-Lagrangian-Eulerian hybrid finite volume/finite element method on moving unstructured meshes for the Navier-Stokes equations
We present a novel second-order semi-implicit hybrid finite volume / finite element (FV/FE) scheme for the numerical solution of the incompressible and weakly compressible Navier-Stokes equations on moving unstructured meshes using an Arbitrary-Lagrangian-Eulerian (ALE) formulation. The scheme is based on a suitable splitting of the governing PDE into subsystems and employs staggered grids, where the pressure is defined on the primal simplex mesh, while the velocity and the remaining flow quantities are defined on an edge-based staggered dual mesh. The key idea of the scheme is to discretize the nonlinear convective and viscous terms using an explicit FV scheme that employs the space-time divergence form of the governing equations on moving space-time control volumes. For the convective terms, an ALE extension of the Ducros flux on moving meshes is introduced, which is kinetic energy preserving and stable in the energy norm when adding suitable numerical dissipation terms. Finally, the pressure equation of the Navier-Stokes system is solved on the new mesh configuration using a continuous FE method, with ℙ_1 Lagrange elements. The ALE hybrid FV/FE method is applied to several incompressible test problems ranging from non-hydrostatic free surface flows over a rising bubble to flows over an oscillating cylinder and an oscillating ellipse. Via the simulation of a circular explosion problem on a moving mesh, we show that the scheme applied to the weakly compressible Navier-Stokes equations is able to capture weak shock waves, rarefactions and moving contact discontinuities. We show that our method is particularly efficient for the simulation of weakly compressible flows in the low Mach number limit, compared to a fully explicit ALE scheme
READ FULL TEXT