An Asymptotically Optimal Algorithm for the One-Dimensional Convex Hull Feasibility Problem

02/03/2023
by   Gang Qiao, et al.
0

This work studies the pure-exploration setting for the convex hull feasibility (CHF) problem where one aims to efficiently and accurately determine if a given point lies in the convex hull of means of a finite set of distributions. We give a complete characterization of the sample complexity of the CHF problem in the one-dimensional setting. We present the first asymptotically optimal algorithm called Thompson-CHF, whose modular design consists of a stopping rule and a sampling rule. In addition, we provide an extension of the algorithm that generalizes several important problems in the multi-armed bandit literature. Finally, we further investigate the Gaussian bandit case with unknown variances and address how the Thompson-CHF algorithm can be adjusted to be asymptotically optimal in this setting.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro