An Comparative Analysis of Different Pitch and Metrical Grid Encoding Methods in the Task of Sequential Music Generation
Pitch and meter are two fundamental music features for symbolic music generation tasks, where researchers usually choose different encoding methods depending on specific goals. However, the advantages and drawbacks of different encoding methods have not been frequently discussed. This paper presents a integrated analysis of the influence of two low-level feature, pitch and meter, on the performance of a token-based sequential music generation model. First, the commonly used MIDI number encoding and a less used class-octave encoding are compared. Second, an dense intra-bar metric grid is imposed to the encoded sequence as auxiliary features. Different complexity and resolutions of the metric grid are compared. For complexity, the single token approach and the multiple token approach are compared; for grid resolution, 0 (ablation), 1 (bar-level), 4 (downbeat-level) 12, (8th-triplet-level) up to 64 (64th-note-grid-level) are compared; for duration resolution, 4, 8, 12 and 16 subdivisions per beat are compared. All different encodings are tested on separately trained Transformer-XL models for a melody generation task. Regarding distribution similarity of several objective evaluation metrics to the test dataset, results suggest that the class-octave encoding significantly outperforms the taken-for-granted MIDI encoding on pitch-related metrics; finer grids and multiple-token grids improve the rhythmic quality, but also suffer from over-fitting at early training stage. Results display a general phenomenon of over-fitting from two aspects, the pitch embedding space and the test loss of the single-token grid encoding. From a practical perspective, we both demonstrate the feasibility and raise the concern of easy over-fitting problem of using smaller networks and lower embedding dimensions on the generation task. The findings can also contribute to futural models in terms of feature engineering.
READ FULL TEXT