An Information-Theoretic Approach to Joint Sensing and Communication

07/29/2021
by   Mehrasa Ahmadipour, et al.
0

A communication setup is considered where a transmitter wishes to convey a message to a receiver and simultaneously estimate the state of that receiver through a common waveform. The state is estimated at the transmitter by means of generalized feedback, i.e., a strictly causal channel output, and the known waveform. The scenario at hand is motivated by joint radar and communication, which aims to co-design radar sensing and communication over shared spectrum and hardware. For the case of memoryless single receiver channels with i.i.d. time-varying state sequences, we fully characterize the capacity-distortion tradeoff, defined as the largest achievable rate below which a message can be conveyed reliably while satisfying some distortion constraints on state sensing. We propose a numerical method to compute the optimal input that achieves the capacity-distortion tradeoff. Then, we address memoryless state-dependent broadcast channels (BCs). For physically degraded BCs with i.i.d. time-varying state sequences, we characterize the capacity-distortion tradeoff region as a rather straightforward extension of single receiver channels. For general BCs, we provide inner and outer bounds on the capacity-distortion region, as well as a sufficient condition when this capacity-distortion region is equal to the product of the capacity region and the set of achievable distortions. A number of illustrative examples demonstrates that the optimal co-design schemes outperform conventional schemes that split the resources between sensing and communication.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro