An interpretation of the final fully connected layer

05/24/2022
by   Siddhartha, et al.
180

In recent years neural networks have achieved state-of-the-art accuracy for various tasks but the the interpretation of the generated outputs still remains difficult. In this work we attempt to provide a method to understand the learnt weights in the final fully connected layer in image classification models. We motivate our method by drawing a connection between the policy gradient objective in RL and supervised learning objective. We suggest that the commonly used cross entropy based supervised learning objective can be regarded as a special case of the policy gradient objective. Using this insight we propose a method to find the most discriminative and confusing parts of an image. Our method does not make any prior assumption about neural network achitecture and has low computational cost. We apply our method on publicly available pre-trained models and report the generated results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset