Analysis of the Single Reference Coupled Cluster Method for Electronic Structure Calculations: The Full Coupled Cluster Equations

12/24/2022
by   Muhammad Hassan, et al.
0

The central problem in electronic structure theory is the computation of the eigenvalues of the electronic Hamiltonian – an unbounded, self-adjoint operator acting on a Hilbert space of antisymmetric functions. Coupled cluster (CC) methods, which are based on a non-linear parameterisation of the sought-after eigenfunction and result in non-linear systems of equations, are the method of choice for high accuracy quantum chemical simulations but their numerical analysis is underdeveloped. The existing numerical analysis relies on a local, strong monotonicity property of the CC function that is valid only in a perturbative regime, i.e., when the sought-after ground state CC solution is sufficiently close to zero. In this article, we introduce a new well-posedness analysis for the single reference coupled cluster method based on the invertibility of the CC derivative. Under the minimal assumption that the sought-after eigenfunction is intermediately normalisable and the associated eigenvalue is isolated and non-degenerate, we prove that the continuous (infinite-dimensional) CC equations are always locally well-posed. Under the same minimal assumptions and provided that the discretisation is fine enough, we prove that the discrete Full-CC equations are locally well-posed, and we derive residual-based error estimates with guaranteed positive constants. Preliminary numerical experiments indicate that the constants that appear in our estimates are a significant improvement over those obtained from the local monotonicity approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro