Approximations for modeling light scattering by spheres with uncertainty in physical parameters

12/27/2021
by   Akif Khan, et al.
0

Uncertainty in physical parameters can make the solution of forward or inverse light scattering problems in astrophysical, biological, and atmospheric sensing applications, cost prohibitive for real-time applications. For example, given a probability density in the parametric space of dimensions, refractive index and wavelength, the number of required evaluations for the expected scattering increases dramatically. In the case of dielectric and weakly absorbing spherical particles (both homogeneous and layered), we begin with a Fraunhofer approximation of the scattering coefficients consisting of Riccati-Bessel functions, and reduce it into simpler nested trigonometric approximations. They provide further computational advantages when parameterized on lines of constant optical path lengths. This can reduce the cost of evaluations by large factors ≈ 50, without a loss of accuracy in the integrals of these scattering coefficients. We analyze the errors of the proposed approximation, and present numerical results for a set of forward problems as a demonstration.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro