Are Graph Neural Networks Miscalibrated?

05/07/2019
by   Leonardo Teixeira, et al.
0

Graph Neural Networks (GNNs) have proven to be successful in many classification tasks, outperforming previous state-of-the-art methods in terms of accuracy. However, accuracy alone is not enough for high-stakes decision making. Decision makers want to know the likelihood that a specific GNN prediction is correct. For this purpose, obtaining calibrated models is essential. In this work, we analyze the calibration of state-of-the-art GNNs on multiple datasets. Our experiments show that GNNs can be calibrated in some datasets but also badly miscalibrated in others, and that state-of-the-art calibration methods are helpful but do not fix the problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro