Artificial Intelligence as Structural Estimation: Economic Interpretations of Deep Blue, Bonanza, and AlphaGo

10/30/2017
by   Mitsuru Igami, et al.
0

Artificial intelligence (AI) has achieved superhuman performance in a growing number of tasks, including the classical games of chess, shogi, and Go, but understanding and explaining AI remain challenging. This paper studies the machine-learning algorithms for developing the game AIs, and provides their structural interpretations. Specifically, chess-playing Deep Blue is a calibrated value function, whereas shogi-playing Bonanza represents an estimated value function via Rust's (1987) nested fixed-point method. AlphaGo's "supervised-learning policy network" is a deep neural network (DNN) version of Hotz and Miller's (1993) conditional choice probability estimates; its "reinforcement-learning value network" is equivalent to Hotz, Miller, Sanders, and Smith's (1994) simulation method for estimating the value function. Their performances suggest DNNs are a useful functional form when the state space is large and data are sparse. Explicitly incorporating strategic interactions and unobserved heterogeneity in the data-generating process would further improve AIs' explicability.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro