Aspect-based Sentiment Classification with Sequential Cross-modal Semantic Graph

08/19/2022
by   Yufeng Huang, et al.
14

Multi-modal aspect-based sentiment classification (MABSC) is an emerging classification task that aims to classify the sentiment of a given target such as a mentioned entity in data with different modalities. In typical multi-modal data with text and image, previous approaches do not make full use of the fine-grained semantics of the image, especially in conjunction with the semantics of the text and do not fully consider modeling the relationship between fine-grained image information and target, which leads to insufficient use of image and inadequate to identify fine-grained aspects and opinions. To tackle these limitations, we propose a new framework SeqCSG including a method to construct sequential cross-modal semantic graphs and an encoder-decoder model. Specifically, we extract fine-grained information from the original image, image caption, and scene graph, and regard them as elements of the cross-modal semantic graph as well as tokens from texts. The cross-modal semantic graph is represented as a sequence with a multi-modal visible matrix indicating relationships between elements. In order to effectively utilize the cross-modal semantic graph, we propose an encoder-decoder method with a target prompt template. Experimental results show that our approach outperforms existing methods and achieves the state-of-the-art on two standard datasets MABSC. Further analysis demonstrates the effectiveness of each component and our model can implicitly learn the correlation between the target and fine-grained information of the image.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro