Assembly Planning by Subassembly Decomposition Using Blocking Reduction

07/08/2019
by   James Watson, et al.
0

The sequence in which a complex product is assembled directly impacts the ease and efficiency of the assembly process, whether executed by a human or a robot. A sequence that gives the assembler the greatest freedom of movement is therefore desirable. Our main contribution is an expression of obstruction relationships between parts as a disassembly interference graph (DIG). We validate this heuristic by developing a disassembly sequence planner that partitions assemblies in a way that prioritizes access to parts, resulting in plans that are comparable in efficiency to two state-of-the-art assembly methods in terms of total plan length. Using DIG, our method generates successive subassembly decompositions, yielding a tree structure that makes parallization opportunities apparent. Our planner generates viable disassembly plans by minimizing our part blockage measure, and thereby demonstrates that this measure is a valuable addition to the Assembly Sequence Planning toolkit.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro