Associating Objects with Transformers for Video Object Segmentation

06/04/2021
by   Zongxin Yang, et al.
0

This paper investigates how to realize better and more efficient embedding learning to tackle the semi-supervised video object segmentation under challenging multi-object scenarios. The state-of-the-art methods learn to decode features with a single positive object and thus have to match and segment each target separately under multi-object scenarios, consuming multiple times computing resources. To solve the problem, we propose an Associating Objects with Transformers (AOT) approach to match and decode multiple objects uniformly. In detail, AOT employs an identification mechanism to associate multiple targets into the same high-dimensional embedding space. Thus, we can simultaneously process the matching and segmentation decoding of multiple objects as efficiently as processing a single object. For sufficiently modeling multi-object association, a Long Short-Term Transformer is designed for constructing hierarchical matching and propagation. We conduct extensive experiments on both multi-object and single-object benchmarks to examine AOT variant networks with different complexities. Particularly, our AOT-L outperforms all the state-of-the-art competitors on three popular benchmarks, i.e., YouTube-VOS (83.7 while keeping better multi-object efficiency. Meanwhile, our AOT-T can maintain real-time multi-object speed on above benchmarks. We ranked 1st in the 3rd Large-scale Video Object Segmentation Challenge. The code will be publicly available at https://github.com/z-x-yang/AOT.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset