AutoDrone: Shortest Optimized Obstacle-Free Path Planning for Autonomous Drones
With technological advancement, drone has emerged as unmanned aerial vehicle that can be controlled by humans to fly or reach a destination. This may be autonomous as well, where the drone itself is intelligent enough to find a shortest obstacle-free path to reach the destination from a designated source. Be it a planned smart city or even a wreckage site affected by natural calamity, we may imagine the buildings, any surface-erected structure or other blockage as obstacles for the drone to fly in a direct line-of-sight path. So, the whole bird's eye-view of the landscape can be transformed to a graph of grid-cells, where some are occupied to indicate the obstacles and some are free to indicate the free path. The autonomous drone (AutoDrone) will be able to find out the shortest hindrance-free path while travelling in two-dimensional space and move from one place to another. In this paper, we propose a method to find out an obstacle-free shortest path in the coordinate system guided by GPS. This can be especially beneficial in rescue operations and fast delivery or pick-up in an energy-efficient way, where our algorithm will help in finding out the shortest path and angle along which it should fly. Our work shows different scenarios to path-tracing, through the shortest feasible path computed by the autonomous drone.
READ FULL TEXT