Autonomous Learning for Face Recognition in the Wild via Ambient Wireless Cues

by   Chris Xiaoxuan Lu, et al.

Facial recognition is a key enabling component for emerging Internet of Things (IoT) services such as smart homes or responsive offices. Through the use of deep neural networks, facial recognition has achieved excellent performance. However, this is only possibly when trained with hundreds of images of each user in different viewing and lighting conditions. Clearly, this level of effort in enrolment and labelling is impossible for wide-spread deployment and adoption. Inspired by the fact that most people carry smart wireless devices with them, e.g. smartphones, we propose to use this wireless identifier as a supervisory label. This allows us to curate a dataset of facial images that are unique to a certain domain e.g. a set of people in a particular office. This custom corpus can then be used to finetune existing pre-trained models e.g. FaceNet. However, due to the vagaries of wireless propagation in buildings, the supervisory labels are noisy and weak.We propose a novel technique, AutoTune, which learns and refines the association between a face and wireless identifier over time, by increasing the inter-cluster separation and minimizing the intra-cluster distance. Through extensive experiments with multiple users on two sites, we demonstrate the ability of AutoTune to design an environment-specific, continually evolving facial recognition system with entirely no user effort.


page 1

page 2

page 3

page 4


A Novel Emergency Light Based Smart Building Solution: Design, Implementation and Use Cases

Deployment of Internet of Things (IoT) in smart buildings has received c...

Gradient Attention Balance Network: Mitigating Face Recognition Racial Bias via Gradient Attention

Although face recognition has made impressive progress in recent years, ...

Towards End-to-End Neural Face Authentication in the Wild – Quantifying and Compensating for Directional Lighting Effects

The recent availability of low-power neural accelerator hardware, combin...

Where Is My Puppy? Retrieving Lost Dogs by Facial Features

A pet that goes missing is among many people's worst fears: a moment of ...

Deep Joint Face Hallucination and Recognition

Deep models have achieved impressive performance for face hallucination ...

A novel classification-selection approach for the self updating of template-based face recognition systems

The boosting on the need of security notably increased the amount of pos...

Please sign up or login with your details

Forgot password? Click here to reset