Autonomous Vehicle Control: End-to-end Learning in Simulated Urban Environments

05/16/2019
by   Hege Haavaldsen, et al.
0

In recent years, considerable progress has been made towards a vehicle's ability to operate autonomously. An end-to-end approach attempts to achieve autonomous driving using a single, comprehensive software component. Recent breakthroughs in deep learning have significantly increased end-to-end systems' capabilities, and such systems are now considered a possible alternative to the current state-of-the-art solutions. This paper examines end-to-end learning for autonomous vehicles in simulated urban environments containing other vehicles, traffic lights, and speed limits. Furthermore, the paper explores end-to-end systems' ability to execute navigational commands and examines whether improved performance can be achieved by utilizing temporal dependencies between subsequent visual cues. Two end-to-end architectures are proposed: a traditional Convolutional Neural Network and an extended design combining a Convolutional Neural Network with a recurrent layer. The models are trained using expert driving data from a simulated urban setting, and are evaluated by their driving performance in an unseen simulated environment. The results of this paper indicate that end-to-end systems can operate autonomously in simple urban environments. Moreover, it is found that the exploitation of temporal information in subsequent images enhances a system's ability to judge movement and distance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro