`Basic' Generalization Error Bounds for Least Squares Regression with Well-specified Models

09/20/2021
by   Karthik Duraisamy, et al.
0

This note examines the behavior of generalization capabilities - as defined by out-of-sample mean squared error (MSE) - of Linear Gaussian (with a fixed design matrix) and Linear Least Squares regression. Particularly, we consider a well-specified model setting, i.e. we assume that there exists a `true' combination of model parameters within the chosen model form. While the statistical properties of Least Squares regression have been extensively studied over the past few decades - particularly with less restrictive problem statements compared to the present work - this note targets bounds that are non-asymptotic and more quantitative compared to the literature. Further, the analytical formulae for distributions and bounds (on the MSE) are directly compared to numerical experiments. Derivations are presented in a self-contained and pedagogical manner, in a way that a reader with a basic knowledge of probability and statistics can follow.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro