Batched Multi-armed Bandits Problem

04/03/2019
by   Zijun Gao, et al.
0

In this paper, we study the multi-armed bandit problem in the batched setting where the employed policy must split data into a small number of batches. While the minimax regret for the two-armed stochastic bandits has been completely characterized in perchet2016batched, the effect of the number of arms on the regret for the multi-armed case is still open. Moreover, the question whether adaptively chosen batch sizes will help to reduce the regret also remains underexplored. In this paper, we propose the BaSE (batched successive elimination) policy to achieve the rate-optimal regret (within logarithmic factors) for batched multi-armed bandits, with matching lower bounds even if the batch sizes are determined in a data-driven manner.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset