Bayesian adaptive N-of-1 trials for estimating population and individual treatment effects
This article presents a novel adaptive design algorithm that can be used to find optimal treatment allocations in N-of-1 clinical trials. This new methodology uses two Laplace approximations to provide a computationally efficient estimate of population and individual random effects within a repeated measures, adaptive design framework. Given the efficiency of this approach, it is also adopted for treatment selection to target the collection of data for the precise estimation of treatment effects. To evaluate this approach, we consider both a simulated and motivating N-of-1 clinical trial from the literature. For each trial, our methods were compared to the multi-armed bandit approach and a randomised N-of-1 trial design for identifying the best treatment for each patient and in terms of the information gained about model parameters. The results show that our new approach selects designs that are highly efficient in achieving each of these objectives. As such, we propose our Laplace-based algorithm as an efficient approach for designing adaptive N-of-1 trials.
READ FULL TEXT