Bayesian clustering of high-dimensional data via latent repulsive mixtures

03/04/2023
by   Lorenzo Ghilotti, et al.
0

Model-based clustering of moderate or large dimensional data is notoriously difficult. We propose a model for simultaneous dimensionality reduction and clustering by assuming a mixture model for a set of latent scores, which are then linked to the observations via a Gaussian latent factor model. This approach was recently investigated by Chandra et al. (2020). The authors use a factor-analytic representation and assume a mixture model for the latent factors. However, performance can deteriorate in the presence of model misspecification. Assuming a repulsive point process prior for the component-specific means of the mixture for the latent scores is shown to yield a more robust model that outperforms the standard mixture model for the latent factors in several simulated scenarios. To favor well-separated clusters of data, the repulsive point process must be anisotropic, and its density should be tractable for efficient posterior inference. We address these issues by proposing a general construction for anisotropic determinantal point processes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro