Bayesian Discovery of Threat Networks

11/21/2013
by   Steven T. Smith, et al.
0

A novel unified Bayesian framework for network detection is developed, under which a detection algorithm is derived based on random walks on graphs. The algorithm detects threat networks using partial observations of their activity, and is proved to be optimum in the Neyman-Pearson sense. The algorithm is defined by a graph, at least one observation, and a diffusion model for threat. A link to well-known spectral detection methods is provided, and the equivalence of the random walk and harmonic solutions to the Bayesian formulation is proven. A general diffusion model is introduced that utilizes spatio-temporal relationships between vertices, and is used for a specific space-time formulation that leads to significant performance improvements on coordinated covert networks. This performance is demonstrated using a new hybrid mixed-membership blockmodel introduced to simulate random covert networks with realistic properties.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro