Bayesian Modal Regression based on Mixture Distributions
Compared to mean regression and quantile regression, the literature on modal regression is very sparse. We propose a unified framework for Bayesian modal regression based on a family of unimodal distributions indexed by the mode along with other parameters that allow for flexible shapes and tail behaviors. Following prior elicitation, we carry out regression analysis of simulated data and datasets from several real-life applications. Besides drawing inference for covariate effects that are easy to interpret, we consider prediction and model selection under the proposed Bayesian modal regression framework. Evidence from these analyses suggest that the proposed inference procedures are very robust to outliers, enabling one to discover interesting covariate effects missed by mean or median regression, and to construct much tighter prediction intervals than those from mean or median regression. Computer programs for implementing the proposed Bayesian modal regression are available at https://github.com/rh8liuqy/Bayesian_modal_regression.
READ FULL TEXT