Bayesian spatio-temporal models for stream networks

03/05/2021
by   Edgar Santos-Fernández, et al.
0

Spatio-temporal models are widely used in many research areas including ecology. The recent proliferation of the use of in-situ sensors in streams and rivers supports space-time water quality modelling and monitoring in near real-time. In this paper, we introduce a new family of dynamic spatio-temporal models, in which spatial dependence is established based on stream distance and temporal autocorrelation is incorporated using vector autoregression approaches. We propose several variations of these novel models using a Bayesian framework. Our results show that our proposed models perform well using spatio-temporal data collected from real stream networks, particularly in terms of out-of-sample RMSPE. This is illustrated considering a case study of water temperature data in the northwestern United States.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro