Beating the integrality ratio for s-t-tours in graphs

04/09/2018
by   Vera Traub, et al.
0

Among various variants of the traveling salesman problem, the s-t-path graph TSP has the special feature that we know the exact integrality ratio, 3/2, and an approximation algorithm matching this ratio. In this paper, we go below this threshold: we devise a polynomial-time algorithm for the s-t-path graph TSP with approximation ratio 1.497. Our algorithm can be viewed as a refinement of the 3/2-approximation algorithm by Sebő and Vygen [2014], but we introduce several completely new techniques. These include a new type of ear-decomposition, an enhanced ear induction that reveals a novel connection to matroid union, a stronger lower bound, and a reduction of general instances to instances in which s and t have small distance (which works for general metrics).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro