Being a Bit Frequentist Improves Bayesian Neural Networks
Despite their compelling theoretical properties, Bayesian neural networks (BNNs) tend to perform worse than frequentist methods in classification-based uncertainty quantification (UQ) tasks such as out-of-distribution (OOD) detection and dataset-shift robustness. In this work, based on empirical findings in prior works, we hypothesize that this issue is due to the avoidance of Bayesian methods in the so-called "OOD training" – a family of techniques for incorporating OOD data during training process, which has since been an integral part of state-of-the-art frequentist UQ methods. To validate this, we treat OOD data as a first-class citizen in BNN training by exploring four different ways of incorporating OOD data in Bayesian inference. We show in extensive experiments that OOD-trained BNNs are competitive to, if not better than recent frequentist baselines. This work thus provides strong baselines for future work in both Bayesian and frequentist UQ.
READ FULL TEXT