Bench-Marking Information Extraction in Semi-Structured Historical Handwritten Records
In this report, we present our findings from benchmarking experiments for information extraction on historical handwritten marriage records Esposalles from IEHHR - ICDAR 2017 robust reading competition. The information extraction is modeled as semantic labeling of the sequence across 2 set of labels. This can be achieved by sequentially or jointly applying handwritten text recognition (HTR) and named entity recognition (NER). We deploy a pipeline approach where first we use state-of-the-art HTR and use its output as input for NER. We show that given low resource setup and simple structure of the records, high performance of HTR ensures overall high performance. We explore the various configurations of conditional random fields and neural networks to benchmark NER on given certain noisy input. The best model on 10-fold cross-validation as well as blind test data uses n-gram features with bidirectional long short-term memory.
READ FULL TEXT