Benchmarking Batch Deep Reinforcement Learning Algorithms

10/03/2019
by   Scott Fujimoto, et al.
0

Widely-used deep reinforcement learning algorithms have been shown to fail in the batch setting–learning from a fixed data set without interaction with the environment. Following this result, there have been several papers showing reasonable performances under a variety of environments and batch settings. In this paper, we benchmark the performance of recent off-policy and batch reinforcement learning algorithms under unified settings on the Atari domain, with data generated by a single partially-trained behavioral policy. We find that under these conditions, many of these algorithms underperform DQN trained online with the same amount of data, as well as the partially-trained behavioral policy. To introduce a strong baseline, we adapt the Batch-Constrained Q-learning algorithm to a discrete-action setting, and show it outperforms all existing algorithms at this task.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro