Branch-and-cut algorithms for the covering salesman problem

04/02/2021
by   Lucas Porto Maziero, et al.
0

The Covering Salesman Problem (CSP) is a generalization of the Traveling Salesman Problem in which the tour is not required to visit all vertices, as long as all vertices are covered by the tour. The objective of CSP is to find a minimum length Hamiltonian cycle over a subset of vertices that covers an undirected graph. In this paper, valid inequalities from the generalized traveling salesman problem are applied to the CSP in addition to new valid inequalities that explore distinct aspects of the problem. A branch-and-cut framework assembles exact and heuristic separation routines for integer and fractional CSP solutions. Computational experiments show that the proposed framework outperformed methodologies from literature with respect to optimality gaps. Moreover, optimal solutions were proven for several previously unsolved instances.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset