Break the Wall Between Homophily and Heterophily for Graph Representation Learning
Homophily and heterophily are intrinsic properties of graphs that describe whether two linked nodes share similar properties. Although many Graph Neural Network (GNN) models have been proposed, it remains unclear how to design a model so that it can generalize well to the whole spectrum of homophily. This work addresses the challenge by identifying three graph features, including the ego node feature, the aggregated node feature, and the graph structure feature, that are essential for graph representation learning. It further proposes a new GNN model called OGNN (Omnipotent Graph Neural Network) that extracts all three graph features and adaptively fuses them to achieve generalizability across the whole spectrum of homophily. Extensive experiments on both synthetic and real datasets demonstrate the superiority (average rank 1.56) of our OGNN compared with state-of-the-art methods.
READ FULL TEXT