CAMAL: Context-Aware Multi-scale Attention framework for Lightweight Visual Place Recognition

09/18/2019
by   Ahmad Khaliq, et al.
10

In the last few years, Deep Convolutional Neural Networks (D-CNNs) have shown state-of-the-art performances for Visual Place Recognition (VPR). Their prestigious generalization power has played a vital role in identifying persistent image regions under changing conditions and viewpoints. However, against the computation intensive D-CNNs based VPR algorithms, lightweight VPR techniques are preferred for resource-constraints mobile robots. This paper presents a lightweight CNN-based VPR technique that captures multi-layer context-aware attentions robust under changing environment and viewpoints. Evaluation of challenging benchmark datasets reveals better performance at low memory and resources utilization over state-of-the-art contemporary VPR methodologies.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro