Can Cascades be Predicted?

by   Justin Cheng, et al.

On many social networking web sites such as Facebook and Twitter, resharing or reposting functionality allows users to share others' content with their own friends or followers. As content is reshared from user to user, large cascades of reshares can form. While a growing body of research has focused on analyzing and characterizing such cascades, a recent, parallel line of work has argued that the future trajectory of a cascade may be inherently unpredictable. In this work, we develop a framework for addressing cascade prediction problems. On a large sample of photo reshare cascades on Facebook, we find strong performance in predicting whether a cascade will continue to grow in the future. We find that the relative growth of a cascade becomes more predictable as we observe more of its reshares, that temporal and structural features are key predictors of cascade size, and that initially, breadth, rather than depth in a cascade is a better indicator of larger cascades. This prediction performance is robust in the sense that multiple distinct classes of features all achieve similar performance. We also discover that temporal features are predictive of a cascade's eventual shape. Observing independent cascades of the same content, we find that while these cascades differ greatly in size, we are still able to predict which ends up the largest.


page 1

page 2

page 3

page 4


CasGCN: Predicting future cascade growth based on information diffusion graph

Sudden bursts of information cascades can lead to unexpected consequence...

Do Cascades Recur?

Cascades of information-sharing are a primary mechanism by which content...

CASCADE: Contextual Sarcasm Detection in Online Discussion Forums

The literature in automated sarcasm detection has mainly focused on lexi...

Independent Asymmetric Embedding Model for Cascade Prediction on Social Network

The prediction for information diffusion on social networks has great pr...

From #Jobsearch to #Mask: Improving COVID-19 Cascade Prediction with Spillover Effects

As the pandemic of social media panic spreads faster than the COVID-19 o...

Explicit size distributions of failure cascades redefine systemic risk on finite networks

How big is the risk that a few initial failures of nodes in a network am...

Cascade Model-based Propensity Estimation for Counterfactual Learning to Rank

Unbiased CLTR requires click propensities to compensate for the differen...

Please sign up or login with your details

Forgot password? Click here to reset