Cardinality Estimators do not Preserve Privacy
Cardinality estimators like HyperLogLog are sketching algorithms that estimate the number of distinct elements in a large multiset. Their use in privacy-sensitive contexts raises the question of whether they leak private information. In particular, can they provide any privacy guarantees while preserving their strong aggregation properties? We formulate an abstract notion of cardinality estimators, which captures this aggregation requirement: one can merge sketches without losing precision. We propose an attacker model and a corresponding privacy definition, strictly weaker than differential privacy: we assume that the attacker has no prior knowledge of the data. We then show that if a cardinality estimator satisfies this definition, then it cannot have a reasonable level of accuracy. We prove similar results for weaker versions of our definition, and analyze the privacy of existing algorithms, showing that their average privacy loss is significant, even for multisets with large cardinalities. We conclude that sketches from cardinality estimators should be considered as sensitive as raw data, and propose risk mitigation strategies for their real-world applications.
READ FULL TEXT