Cardiopulmonary Resuscitation Quality Parameters from Inertial Sensor Data using Differential Evolution Fitting of Sinusoids

08/31/2018
by   Christian Lins, et al.
0

In this paper, we present a robust sinusoidal model fitting method based on the Differential Evolution (DE) algorithm for determining cardiopulmonary resuscitation (CPR) quality-parameters - naming chest compression frequency and depth - as measured by an inertial sensor placed at the wrist. Once included into a smartphone or smartwatch app, our proposed algorithm will enable laypersons to improve cardiopulmonary resuscitation (as part of a continuous closed-loop support-system). By evaluating the sensitivity of the model with data recorded by a Laerdal Resusci Anne mannequin as reference standard, a low variance for compression frequency of +-2.7 cpm (2.5 sensor placed at the wrist, making this previously not evaluated position a suitable alternative to the typical smartphone placement in the hand.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro