Causal conditional hidden Markov model for multimodal traffic prediction

by   Yu Zhao, et al.

Multimodal traffic flow can reflect the health of the transportation system, and its prediction is crucial to urban traffic management. Recent works overemphasize spatio-temporal correlations of traffic flow, ignoring the physical concepts that lead to the generation of observations and their causal relationship. Spatio-temporal correlations are considered unstable under the influence of different conditions, and spurious correlations may exist in observations. In this paper, we analyze the physical concepts affecting the generation of multimode traffic flow from the perspective of the observation generation principle and propose a Causal Conditional Hidden Markov Model (CCHMM) to predict multimodal traffic flow. In the latent variables inference stage, a posterior network disentangles the causal representations of the concepts of interest from conditional information and observations, and a causal propagation module mines their causal relationship. In the data generation stage, a prior network samples the causal latent variables from the prior distribution and feeds them into the generator to generate multimodal traffic flow. We use a mutually supervised training method for the prior and posterior to enhance the identifiability of the model. Experiments on real-world datasets show that CCHMM can effectively disentangle causal representations of concepts of interest and identify causality, and accurately predict multimodal traffic flow.


Spatio-temporal neural structural causal models for bike flow prediction

As a representative of public transportation, the fundamental issue of m...

Towards Spatio-Temporal Cross-Platform Graph Embedding Fusion for Urban Traffic Flow Prediction

In this paper, we have proposed STC-GEF, a novel Spatio-Temporal Cross-p...

Hybrid hidden Markov LSTM for short-term traffic flow prediction

Deep learning (DL) methods have outperformed parametric models such as h...

Traffic Flow Forecasting Using a Spatio-Temporal Bayesian Network Predictor

A novel predictor for traffic flow forecasting, namely spatio-temporal B...

Learning latent causal graphs via mixture oracles

We study the problem of reconstructing a causal graphical model from dat...

STGC-GNNs: A GNN-based traffic prediction framework with a spatial-temporal Granger causality graph

The key to traffic prediction is to accurately depict the temporal dynam...

CausalAF: Causal Autoregressive Flow for Goal-Directed Safety-Critical Scenes Generation

Goal-directed generation, aiming for solving downstream tasks by generat...

Please sign up or login with your details

Forgot password? Click here to reset