Chinese Sentences Similarity via Cross-Attention Based Siamese Network

04/18/2021
by   Zhen Wang, et al.
0

Measuring sentence similarity is a key research area nowadays as it allows machines to better understand human languages. In this paper, we proposed a Cross-Attention Siamese Network (CATsNet) to carry out the task of learning the semantic meanings of Chinese sentences and comparing the similarity between two sentences. This novel model is capable of catching non-local features. Additionally, we also tried to apply the long short-term memory (LSTM) network in the model to improve its performance. The experiments were conducted on the LCQMC dataset and the results showed that our model could achieve a higher accuracy than previous work.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset