Classification for Big Dataset of Bioacoustic Signals Based on Human Scoring System and Artificial Neural Network

05/15/2013
by   Mohammad Pourhomayoun, et al.
0

In this paper, we propose a method to improve sound classification performance by combining signal features, derived from the time-frequency spectrogram, with human perception. The method presented herein exploits an artificial neural network (ANN) and learns the signal features based on the human perception knowledge. The proposed method is applied to a large acoustic dataset containing 24 months of nearly continuous recordings. The results show a significant improvement in performance of the detection-classification system; yielding as much as 20 false positive rate.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset