CLeBPI: Contrastive Learning for Bug Priority Inference

12/02/2022
by   Wenyao Wang, et al.
0

Automated bug priority inference can reduce the time overhead of bug triagers for priority assignments, improving the efficiency of software maintenance. Currently, there are two orthogonal lines for this task, i.e., traditional machine learning based (TML-based) and neural network based (NN-based) approaches. Although these approaches achieve competitive performance, our observation finds that existing approaches face the following two issues: 1) TML-based approaches require much manual feature engineering and cannot learn the semantic information of bug reports; 2) Both TML-based and NN-based approaches cannot effectively address the label imbalance problem because they are difficult to distinguish the semantic difference between bug reports with different priorities. In this paper, we propose CLeBPI (Contrastive Learning for Bug Priority Inference), which leverages pre-trained language model and contrastive learning to tackle the above-mentioned two issues. Specifically, CLeBPI is first pre-trained on a large-scale bug report corpus in a self-supervised way, thus it can automatically learn contextual representations of bug reports without manual feature engineering. Afterward, it is further pre-trained by a contrastive learning objective, which enables it to distinguish semantic differences between bug reports, learning more precise contextual representations for each bug report. When finishing pre-training, we can connect a classification layer to CLeBPI and fine-tune it for bug priority inference in a supervised way. To verify the effectiveness of CLeBPI, we choose four baseline approaches and conduct comparison experiments on a public dataset. The experimental results show that CLeBPI outperforms all baseline approaches by 23.86 effectiveness.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset