CLIP-Dissect: Automatic Description of Neuron Representations in Deep Vision Networks

04/23/2022
by   Tuomas Oikarinen, et al.
0

In this paper, we propose CLIP-Dissect, a new technique to automatically describe the function of individual hidden neurons inside vision networks. CLIP-Dissect leverages recent advances in multimodal vision/language models to label internal neurons with open-ended concepts without the need for any labeled data or human examples, which are required for existing tools to succeed. We show that CLIP-Dissect provides more accurate descriptions than existing methods for neurons where the ground-truth is available as well as qualitatively good descriptions for hidden layer neurons. In addition, our method is very flexible: it is model agnostic, can easily handle new concepts and can be extended to take advantage of better multimodal models in the future. Finally CLIP-Dissect is computationally efficient and labels all neurons of a layer in a large vision model in tens of minutes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro