Collaborative Learning with a Drone Orchestrator

by   Mahnoosh Mahdavimoghadam, et al.

In this paper, the problem of drone-assisted collaborative learning is considered. In this scenario, swarm of intelligent wireless devices train a shared neural network (NN) model with the help of a drone. Using its sensors, each device records samples from its environment to gather a local dataset for training. The training data is severely heterogeneous as various devices have different amount of data and sensor noise level. The intelligent devices iteratively train the NN on their local datasets and exchange the model parameters with the drone for aggregation. For this system, the convergence rate of collaborative learning is derived while considering data heterogeneity, sensor noise levels, and communication errors, then, the drone trajectory that maximizes the final accuracy of the trained NN is obtained. The proposed trajectory optimization approach is aware of both the devices data characteristics (i.e., local dataset size and noise level) and their wireless channel conditions, and significantly improves the convergence rate and final accuracy in comparison with baselines that only consider data characteristics or channel conditions. Compared to state-of-the-art baselines, the proposed approach achieves an average 3.85 of the trained NN on benchmark datasets for image recognition and semantic segmentation tasks, respectively. Moreover, the proposed framework achieves a significant speedup in training, leading to an average 24 the drone hovering time, communication overhead, and battery usage, respectively for these tasks.


page 8

page 10


Conceptual Design of Human-Drone Communication in Collaborative Environments

Autonomous robots and drones will work collaboratively and cooperatively...

Collaborative Target Search with a Visual Drone Swarm: An Adaptive Curriculum Embedded Multi-stage Reinforcement Learning Approach

Equipping drones with target search capabilities is desirable for applic...

Deep Learning for THz Drones with Flying Intelligent Surfaces: Beam and Handoff Prediction

We consider the problem of proactive handoff and beam selection in Terah...

pFedSim: Similarity-Aware Model Aggregation Towards Personalized Federated Learning

The federated learning (FL) paradigm emerges to preserve data privacy du...

A Deep Neural Networks Approach for Pixel-Level Runway Pavement Crack Segmentation Using Drone-Captured Images

Pavement conditions are a critical aspect of asset management and direct...

A Multi-tasking Model of Speaker-Keyword Classification for Keeping Human in the Loop of Drone-assisted Inspection

Audio commands are a preferred communication medium to keep inspectors i...

Automatic Parameter Adaptation for Quadrotor Trajectory Planning

Online trajectory planners enable quadrotors to safely and smoothly navi...

Please sign up or login with your details

Forgot password? Click here to reset