COLO: A Contrastive Learning based Re-ranking Framework for One-Stage Summarization

09/29/2022
by   Chenxin An, et al.
0

Traditional training paradigms for extractive and abstractive summarization systems always only use token-level or sentence-level training objectives. However, the output summary is always evaluated from summary-level which leads to the inconsistency in training and evaluation. In this paper, we propose a Contrastive Learning based re-ranking framework for one-stage summarization called COLO. By modeling a contrastive objective, we show that the summarization model is able to directly generate summaries according to the summary-level score without additional modules and parameters. Extensive experiments demonstrate that COLO boosts the extractive and abstractive results of one-stage systems on CNN/DailyMail benchmark to 44.58 and 46.33 ROUGE-1 score while preserving the parameter efficiency and inference efficiency. Compared with state-of-the-art multi-stage systems, we save more than 100 GPU training hours and obtaining 3 8 speed-up ratio during inference while maintaining comparable results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro