Computing Bottleneck Distance for 2-D Interval Decomposable Modules

03/07/2018
by   Tamal K. Dey, et al.
0

Computation of the interleaving distance between persistence modules is a central task in topological data analysis. For 1-D persistence modules, thanks to the isometry theorem, this can be done by computing the bottleneck distance with known efficient algorithms. The question is open for most n-D persistence modules, n>1, because of the well recognized complications of the indecomposables. Here, we consider a reasonably complicated class called 2-D interval decomposable modules whose indecomposables may have a description of non-constant complexity. We present a polynomial time algorithm to compute the bottleneck distance for these modules from indecomposables, which bounds the interleaving distance from above, and give another algorithm to compute a new distance called dimension distance that bounds it from below.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro