Computing eigenvalues of the Laplacian on rough domains

04/19/2021
by   Frank Rösler, et al.
0

We prove a general Mosco convergence theorem for bounded Euclidean domains satisfying a set of mild geometric hypotheses. For bounded domains, this notion implies norm-resolvent convergence for the Dirichlet Laplacian which in turn ensures spectral convergence. A key element of the proof is the development of a novel, explicit Poincaré-type inequality. These results allow us to construct a universal algorithm capable of computing the eigenvalues of the Dirichlet Laplacian on a wide class of rough domains. Many domains with fractal boundaries, such as the Koch snowflake and certain filled Julia sets, are included among this class. Conversely, we construct a counter example showing that there does not exist a universal algorithm of the same type capable of computing the eigenvalues of the Dirichlet Laplacian on an arbitrary bounded domain.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset