Consistency-Based Semi-supervised Evidential Active Learning for Diagnostic Radiograph Classification

09/05/2022
by   Shafa Balaram, et al.
0

Deep learning approaches achieve state-of-the-art performance for classifying radiology images, but rely on large labelled datasets that require resource-intensive annotation by specialists. Both semi-supervised learning and active learning can be utilised to mitigate this annotation burden. However, there is limited work on combining the advantages of semi-supervised and active learning approaches for multi-label medical image classification. Here, we introduce a novel Consistency-based Semi-supervised Evidential Active Learning framework (CSEAL). Specifically, we leverage predictive uncertainty based on theories of evidence and subjective logic to develop an end-to-end integrated approach that combines consistency-based semi-supervised learning with uncertainty-based active learning. We apply our approach to enhance four leading consistency-based semi-supervised learning methods: Pseudo-labelling, Virtual Adversarial Training, Mean Teacher and NoTeacher. Extensive evaluations on multi-label Chest X-Ray classification tasks demonstrate that CSEAL achieves substantive performance improvements over two leading semi-supervised active learning baselines. Further, a class-wise breakdown of results shows that our approach can substantially improve accuracy on rarer abnormalities with fewer labelled samples.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset