Constraint preserving discontinuous Galerkin method for ideal compressible MHD on 2-D Cartesian grids

07/26/2020
by   Praveen Chandrashekar, et al.
0

We propose a constraint preserving discontinuous Galerkin method for ideal compressible MHD in two dimensions and using Cartesian grids, which automatically maintains the global divergence-free property. The approximation of the magnetic field is achieved using Raviart-Thomas polynomials and the DG scheme is based on evolving certain moments of these polynomials which automatically guarantees divergence-free property. We also develop HLL-type multi-dimensional Riemann solvers to estimate the electric field at vertices which are consistent with the 1-D Riemann solvers. When limiters are used, the divergence-free property may be lost and it is recovered by a divergence-free reconstruction step. We show the performance of the method on a range of test cases up to fourth order of accuracy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro