Controlled Deep Reinforcement Learning for Optimized Slice Placement

We present a hybrid ML-heuristic approach that we name "Heuristically Assisted Deep Reinforcement Learning (HA-DRL)" to solve the problem of Network Slice Placement Optimization. The proposed approach leverages recent works on Deep Reinforcement Learning (DRL) for slice placement and Virtual Network Embedding (VNE) and uses a heuristic function to optimize the exploration of the action space by giving priority to reliable actions indicated by an efficient heuristic algorithm. The evaluation results show that the proposed HA-DRL algorithm can accelerate the learning of an efficient slice placement policy improving slice acceptance ratio when compared with state-of-the-art approaches that are based only on reinforcement learning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro