Convergence Analysis of a Local Stationarity Scheme for Rate-Independent Systems and Application to Damage

04/30/2021
by   Michael Sievers, et al.
0

This paper is concerned with an approximation scheme for rate-independent systems governed by a non-smooth dissipation and a possibly non-convex energy functional. The scheme is based on the local minimization scheme introduced in [EM06], but relies on local stationarity of the underlying minimization problem. Under the assumption of Mosco-convergence for the dissipation functional, we show that accumulation points exist and are so-called parametrized solutions of the rate-independent system. In particular, this guarantees the existence of parametrized solutions for a rather general setting. Afterwards, we apply the scheme to a model for the evolution of damage.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro